The EPR Zero-Field Splitting D and its Pressure and Temperature Dependence for Trigonal $\rm Mn^{2+}$ Centers in $\rm [Zn(H_2O)_6](BF_4)_2$: $\rm Mn^{2+}$ Crystal

Hong-Gang Liu^a, Xiao-Xuan Wu^{a,b,c}, Wen-Chen Zheng^{a,c}, and Lv He^a

^a Department of Material Science, Sichuan University, Chengdu 610064, People's Republic of China
 ^b Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, People's Republic of China

^c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016,

People's Republic of China

Reprint requests to W.-C. Z.; Fax: +86-28-85416050; E-mail: zhengwc1@163.com

Z. Naturforsch. **61a**, 289 – 292 (2006); received February 21, 2006

The EPR zero-field splitting $D = b_2^0$ and its pressure and temperature dependence for trigonal $\mathrm{Mn^{2+}}$ centers in low and room temperature phases in $[\mathrm{Zn}(\mathrm{H_2O})_6](\mathrm{BF_4})_2 : \mathrm{Mn^{2+}}$ crystal are studied by a high-order perturbation formula based on the dominant spin-orbit coupling mechanism. From the studies, the local trigonal distortion angles, the local angular compressibilities and the local angular thermal expansion coefficients for $\mathrm{Mn^{2+}}$ centers in both phases of the $[\mathrm{Zn}(\mathrm{H_2O})_6](\mathrm{BF_4})_2$ crystal are estimated. The results are discussed.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-Field Theory; Defect Structure and Properties; Mn²⁺; [Zn(H₂O)₆](BF₄)₂.